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Uczenie maszynowe 

W ciągu ostatnich kilku lat, postępy w uczeniu maszynowym pozwoliły na przyspieszenie analizy 

dużych zbiorów danych. Algorytmy uczenia maszynowego szczególnie dobrze sprawdzają się w 

zadaniach wymagających rozpoznawanie obrazów i mowy oraz przetwarzaniu języka. Znalazły 

one również zastosowanie w obszarach nauk ścisłych takich jak chemia, biologia czy farmacja, 

gdzie mogą posłużyć do [1]: 

• identyfikacji celów molekularnych przy projektowaniu leków, 

• predykcji struktur białek oraz ich kompleksów, 

• projektowania syntezy, 

• predykcji właściwości związków chemicznych, 

• predykcji oddziaływań pomiędzy ligandem a celem molekularnym, 

• repozycjonowania leków. 

 

Przełom w wykorzystaniu sztucznej inteligencji do predykcji struktur nastąpił w 2020 roku, gdy 

AlphaFold 2 wygrał 14-tą edycję konkursu CASP, w którym zespoły z całego świata usiłują 

przewidzieć nowe, nieupublicznione struktury białek [2]. AlphaFold 2 wykazał się zdecydowanie 

wyższą precyzją od innych zaprezentowanych metod, generując w niektórych przypadkach 

struktury niewiele odbiegające od eksperymentalnych [2]. Za swoje osiągnięcie w obszarze 

predykcji struktur białek, twórcy AlphaFold, Demis Hassabis oraz John Jumper, wspólnie z 

Davidem Baker, otrzymali Nagrodę Nobla. Sukces AlphaFold zainspirował rozwój kolejnych 

metod przewidywania struktur opartych na uczeniu maszynowym, takich jak  RoseTTaFold [3] 

czy AlphaDesign [4]. 

 

Metody uczenia maszynowego są również stosowane w systemach wspomagania decyzji. Przy 

projektowaniu leków, takie systemy mogą służyć np. do predykcji czy cząsteczka będąca 

przedmiotem badań przedklinicznych będzie oddziaływać z danym celem molekularnym oraz do 

sprawdzenia możliwości wiązania poza celem. Do jednych z najbardziej znanych systemów 

decyzyjnych należy SwissTargetPrediction, który przewiduje prawdopodobieństwo wiązania 
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wybranej cząsteczki do ponad 3600 różnych białek, w tym ludzkich, mysich i szczurzych [5]. 

Istnieją również bardziej specyficzne systemy decyzyjne jak GPCRVS [6], [7] skupiające się 

wyłącznie na wybranej grupie białek, np. receptorach sprzężonymi z białkiem G (GPCR). Inne 

przykłady takich systemów decyzyjnych to pdCSM-GPCR [8], EnGCI [9] oraz DeepGPCR [10]. 

Identyfikacja in silico cząsteczek o wysokim prawdopodobieństwie wiązania z celem 

molekularnym umożliwia zaoszczędzenie czasu oraz środków finansowych na dalszych etapach 

badań przedklinicznych. 
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