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Selektywność funkcjonalna 

Selektywność funkcjonalna, inaczej stronniczy agonizm (ang. functional selectivity oraz 

biased agonism), to zdolność receptora do preferencyjnego aktywowania jednej ścieżki 

sygnałowej pod wpływem liganda [1]. Efekt ten jest mierzony względem liganda referencyjnego, 

zwykle jest to ligand endogenny [1]. W kontekście receptorów sprzężonych z białkami G (GPCR, 

ang. G protein-coupled receptors), oznacza to, że receptor preferencyjnie wiąże się z wybranym 

białkiem efektorowym, czyli białkiem G lub β-arestyną [1]. Ponadto, ligandy mogą również 

preferencyjnie aktywować ścieżki powiązane z różnymi podtypami białka G (Rys. 1), zależnymi 

od podtypu jednostki G⍺, których wyróżniane są cztery grupy: 

• G⍺s, czyli białko stymulujące, którego aktywacja prowadzi do zwiększenia stężenia 

wewnątrzkomórkowego cAMP (cyklicznego adenozyno-3’,5’-monofosforanu), a co za 

tym idzie, do aktywacji kinazy białkowej A (PKA) [2]; 

• G⍺i, czyli białko hamujące, które hamuje produkcję cAMP [3]; 

• G⍺q, którego aktywacja prowadzi do zwiększenia wewnątrzkomórkowego stężenia Ca2+ 

oraz aktywacji kinazy białkowej C (PKC) [4]; 

• G⍺12/13, które są odpowiedzialne m. in. za regulację cytoszkieletu oraz apoptozę [5]. 

 

Rysunek 1. Główne szlaki sygnałowe, w których uczestniczą receptory GPCR. Po lewej stronie szlaki związane z 
przekazywaniem sygnału przez białko G; po prawej szlaki związane z przekazywaniem sygnału przez β-arestynę. 
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Aktywacja ścieżki związanej z β-arestyną (Rys. 1) może prowadzić do desensytyzacji 

receptora, czyli osłabienia reakcji receptora na działanie liganda, lub internalizacji—przeniesienia 

receptora z błony komórkowej do wnętrza komórki [6].  

Zjawisko preferencyjnego aktywowania wybranych szlaków sygnałowych jest 

wykorzystywane w projektowaniu leków ze zwiększonym efektem terapeutycznym oraz 

zmniejszonym ryzykiem wystąpienia niepożądanych reakcji polekowych. Kilka takich leków 

zostało już dopuszczonych do użytku. Do najbardziej znanych należą beta-blokery (inaczej leki 

beta-adrenolityczne), którymi leczone są choroby układu sercowo-naczyniowego, np. arytmia [7], 

niewydolność serca [8], czy nadciśnienie tętnicze (szczególnie u pacjentów po zawale serca, lub u 

których stwierdzono niewydolność serca czy arytmię) [9]. Do tej grupy leków należy m. in. 

karwedilol oraz nebiwolol. Wiążą się z receptorami β-adrenergicznymi (β1AR oraz β2AR), gdzie 

wykazują działanie antagonistyczne względem ścieżki sygnałowej związanej z białkiem G, lecz 

agonistyczne względem ścieżki związanej z β-arestyną [10]. Postuluje się, że aktywacja ścieżki 

związanej z białkiem G może skutkować polepszonym rozszerzeniem oskrzeli przy leczeniu astmy 

w porównaniu z agonistami niebędącymi selektywnymi funkcjonalnie [10]. Do innych 

przykładów leków selektywnych funkcjonalnie dostępnych już na rynku należą m.in. olicerydyna 

(agonista receptora µ-opioidowego selektywny względem białka G, wykazujący zmniejszone 

ryzyko hipowentylacji) [11], arypiprazol (ligand oddziałujący z receptorem dopaminowym D2, 

wykorzystywany przy leczeniu schizofrenii) [12], oraz tirzepatyd (agonista receptora peptydu 

glukagonopodobnego 1, GLP1R, selektywny względem białka Gs, wykorzystywany przy leczeniu 

cukrzycy typu 2) [13]. 

Istnieją również receptory, które same z siebie aktywują tylko wybrane ścieżki sygnałowe 

niezależnie od typu ligandu. Jest to spowodowane m.in. różnicami strukturalnymi, przez które 

dany receptor nie może wiązać się z białkiem G lub β-arestyną. Do takich receptorów należą: 

• atypowe receptory chemokinowe—nie wiążą się z białkiem Gi ze względu na różnice w 

motywie DRYLAIV lub jego brakiem [14]; 

• receptor C5aR2 układu dopełniacza—nie wiążą się z białkiem G ze względu na 

modyfikacje obecne w motywach DRY i NPxxY oraz brakiem reszt treoninowych i 

serynowych w pętli wewnątrzkomórkowej ICL3 [15]; 
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• receptor adrenergiczny β3, który nie wiąże się z β-arestyną ze względu na niekorzystne 

umiejscowienie w C-końcu reszt mogących ulec fosforylacji [16]. 

Dane eksperymentalne dotyczące ligandów selektywnych funkcjonalnie deponowane są np. 

w bazie open-access Biased Signaling Atlas [17]. Na chwilę obecną, ich liczba jest niestety dość 

mała i niewystarczająca do zastosowania ich np. jako danych treningowych dla metod uczenia 

maszynowego w projektowaniu kolejnych takich ligandów. Niemniej jednak, ze względu na 

możliwe korzyści terapeutyczne, liczba ligandów selektywnych funkcjonalnie i ich zastosowań 

jako leki w badaniach klinicznych stale rośnie. 
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