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Figure S1. Multiple sequence alignment of OX1, OX2 (UniProt ID: O43613, O43614, 

respectively), NTSR1 (6OSA, 6OS9), and rhodopsin (6CMO). OX1 and OX2 sequences were 

derived from UniProt [1, 2], while the remaining sequences were extracted from PDB structures 

[3, 4, 5]. The most conserved residues were marked in red and numbered according to the 

Ballesteros-Weinstein notation [6]. The alignment was performed using Clustal Omega v. 

1.2.4.[7].  
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Figure S2. Fluctuations in the binding site area and comparison with PDB structures. (A) 

The RMSD plots and average RMSD fluctuations obtained for compound 1 and lemborexant-

including simulation systems. (B) A superposition of the active-state 7L1V PDB structure (green), 

the inactive-state 7XRR structure (gray), and the first frame of the lemborexant-including 

simulations (blue). Residues Q3.32 and H7.39 are shown as sticks. 

 

0 500 1000 1500 2000

0

1

2

3

4

5

6

time [ns]

R
M

SD
 [Å

]

0 500 1000 1500 2000

0

1

2

3

4

5

6

time [ns]

R
M

SD
 [Å

]

lemborexant replica 1

0 500 1000 1500 2000

0

1

2

3

4

5

6

time [ns]

R
M

SD
 [Å

]

compound 1 replica 1 compound 1 replica 2 compound 1 replica 3

lemborexant replica 2 lemborexant replica 3

RMSD = (1.762 ± 0.520) Å RMSD = (2.314 ± 0.419) Å RMSD = (2.414 ± 0.691) Å 

RMSD = (3.003 ± 0.698) Å RMSD = (2.547 ± 0.366) Å RMSD = (3.391 ± 0.434) Å 

0 500 1000 1500 2000

0

1

2

3

4

5

6

time [ns]

R
M

SD
 [Å

]

0 500 1000 1500 2000

0

1

2

3

4

5

6

time [ns]

R
M

SD
 [Å

]

0 500 1000 1500 2000

0

1

2

3

4

5

6

time [ns]
R

M
SD

 [Å
]

A

B

H7.39 H7.39 H7.39

Q3.32
Q3.32

Q3.32

lemborexant replica 1 lemborexant replica 2 lemborexant replica 3



 4 

 

 

Figure S3. The formation of hydrogen bonds between R3.50 of the ‘DRW’ motif and residues 
T2.39 and Y5.58 in the compound 1-including simulations. The ‘DRW’ motif corresponds to the 
well-known ‘DRY’ motif in GPCRs. The maximum hydrogen bond distance was set to 4 Å and 
the angle cut-off was set to 20º (VMD settings). In orexin receptors, the inactive-state interactions 
of R3.50 are visible in 7XRR (OX2 bound to lemborexant), while the active-state interactions are 
visible in 7L1U (OX2 bound to OxB) and 7L1V (OX2 bound to compound 1).  
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Figure S4. The formation of hydrogen bonds between R3.50 of the ‘DRW’ motif and residues 
T2.39 and Y5.58 in the lemborexant-including simulations. The maximum hydrogen bond 
distance was set to 4 Å and the angle cut-off was set to 20º (VMD typical settings). 
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Figure S5. A comparison of conformations of sequence motifs in simulations systems and in 

PDB structures. (A) A comparison of the PIF (PVF in OX2), CWxP (CYLP in OX2), and NPxxY 

(NPIIY in OX2) microswitches in the active-state 7L1V structure (green), inactive-state 7XRR 

structure (gray), and the final frame of the simulation replicas (blue). (B) A table describing the 

conformations of the microswitches in the final frame for each replica. 
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Figure S6. The formation of hydrogen bonds between compound 1 and the OX2 receptor 

residues Q3.32, H7.39, and T2.61. The maximum hydrogen bond distance was set to 4 Å, and the 

angle cut-off was set 20º (VMD settings). According to Hong et al., a hydrogen bond should be 

present between H7.39 and the amide carbonyl linker of compound 1, and further contacts with this 

residue stabilized the bent conformation of the ligand [3].  
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Figure S7. The formation of hydrogen bonds between lemborexant and the OX2 receptor 

residues Q3.32, H7.39, and T2.61. The maximum hydrogen bond distance was set to 4 Å, and the 

angle cut-off was set 20º (VMD typical settings). 
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Figure S8. Multiple sequence alignment of Gαq (UniProt ID: P50148) and Gα subunits in the 

7L1V and 7SQ2 PDB structures. The first Gαq sequence was derived from UniProt [8] and 

following Gα sequences from 7L1V [3] and 7SQ2 [9] PDB structures, respectively. Residues were 

assigned a secondary structure based on the GproteinDb [10] numbering for Gαq and the topology 

of the Gα subunit described by Calebiro et al. [11] The multiple sequence alignment was performed 

using Clustal Omega v. 1.2.4. [12]. 
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Figure S9. Changes of the D277 (D272) and F341 (F336) microswitches conformations 

observed in the compound 1-including simulations. (Top) Changes in the conformation of the 

microswitches between the first (gray) and the last (green) frame of the compound 1-including 

simulations. (Middle) The χ1 dihedral angle (N–Cα–Cβ–Cγ) computed for microswitch D277G.HG.02 

(ca. -60°—on; 60°—off). (Bottom) The RMSD graphs and mean RMSD values computed for a 

single carbon atom of the phenyl group of microswitch F341G.H5.08.  D277G.HG.02 and F341G.H5.08 

refer to D272 and F336 as labeled by Ham et al. [13]. 
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Figure S10. Changes of the D227 (D272) and F341 (F336) microswitches conformations 

observed in the lemborexant-including simulations. (Top) The changes in the conformations of 

the microswitches between the first (gray) and the last (green) frame of the lemborexant-including 

simulations. (Middle) The dihedral angle between the nitrogen and carbon atoms of the main chain 

and the two carbon atoms of the side chain computed for microswitch D277G.HG.02 (ca. -60°—on; 

60°—off). (Bottom) The RMSD graphs and mean RMSD values computed for a single carbon 

atom of the phenyl group of microswitch F341G.H5.08. D277G.HG.02 and F341G.H5.08 refer to D272 

and F336 as labeled by Ham et al. [13].  
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Figure S11. Changes in conformations of G protein subunits observed in MD simulations. 

(Top) A surface view of the full-length Ga subunit model (green) for the first frame of lemborexant 

replica 3 (left), the last frame of lemborexant replica 1 (center), and the last frame of compound 

1 replica 1 (right) superposed on the templates (Ga—the 7SQ2 crystal structure; Gβ, Gγ and the 

receptor—the 7L1V cryo-EM structure) used for the homology modeling (gray). Gγ was marked 

in dark gray in the template structure and in dark green in the simulation-derived conformations. 

(Bottom) The side view from the Gβ and Gγ subunits. The movement of Gγ and the adjacent 

helical regions of Gβ during the Ga opening was observed in comparison to the template structure. 
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Figure S12. Fluctuations of the AHD domain in simulations. The RMSD plots and average 

RMSD fluctuations observed for AHD in compound 1 and lemborexant-including replicas. 
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Figure S13. Fluctuations of GDP in simulations. The RMSD plots and average RMSD 

fluctuations observed for GDP in the compound 1 and lemborexant-including simulations. 
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Figure S14. The formation of hydrogen bonds between GDP and R183G.hfs2.02 in the 

compound 1 and lemborexant-including simulations. The hydrogen bond distance was 

specified as 4 Å, and the angle cut-off was 20º.
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Figure S15. Fluctuations of the macroswitch I in simulations. The RMSD plots and average 

RMSD fluctuations observed for the macroswitch I in the compound 1 and lemborexant-including 

simulations.
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Figure S16. Fluctuations of the macroswitch III in simulations. The RMSD plots and average 

RMSD fluctuations observed for the macroswitch III in the compound 1 and lemborexant-

including simulations.
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Figure S17. Changes in the orientation of N-terminal helices of Gα in the compound 1 and 

lemborexant-including simulations in comparison to known active-state NTSR1 structures 

from PDB. The first frame of the simulation was shown in gray with a blue N-terminal helix, and 

the final frame was shown in green with a red N-terminal helix. The changes in the lemborexant-

including complexes resembled the active-like direction of changes in NTSR1 [13]. (Right) The 

two active states of NTSR1: 6OSA—gray and 6OS9—green. In the case of NTSR1, one fully 

active state (C, PDB ID: 6OS9 [4]) was preceded by the other one (NC, PDB ID: 6OSA [4]), with 

the N-terminal helix of Ga rotated by 45° counterclockwise with respect to the receptor main axis 

(right). The active-state structure of rhodopsin (6CMO) represented the fully active C state but 

with the N-terminal helix slightly moved to the intracellular side. The homology models used to 

generate the simulation systems all included the Ga N-terminal helix in between the NC and C 

states, slightly closer to the C state. At the end of the simulations, the same direction of changes 

towards the C state was observed only for one compound 1-including replica 1, which also 

demonstrated the most similarities to pre-opening state of Ga. However, for compound 1-

including replica 3, the N-terminal helix moved towards the NC state. In the remaining 

lemborexant-including replicas, the N-terminal helix of Ga either remained as it was or moved to 

the bottom, not to the left as in 6OS9. This could suggest that the differences between the exerted 

effects of lemborexant and the classic agonist compound 1 on OX2 could be due to the stabilization 

of slightly different conformational states of the OX2–G protein multicomplex during activation. 
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frame 0 frame 0
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Figure S18. The RMSD plots and average RMSD fluctuations observed for ECL2 in the 

compound 1 and lemborexant-including simulations. The movement of ECL2 was also 

suggested when comparing the active-state (7L1V) and inactive-state (7XRR) structures, as it 

highly mobile in the former, and helical and arranged parallel to the lipid bilayer in the latter. The 

N-terminal helical region has been shown to be necessary for high-potency neuropeptide mediated 

activation of OX2 [14]. In comparison to our previous MD simulations of OX2 with mini-Gsqi, 

ECL2 closed even more quickly for the compound 1 simulations. More fluctuations were present 

in the lemborexant systems, and ECL2 closed more slowly when compared to compound 1.  
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